Lunar Impact Glasses: Small Samples, Big Science

Nicolle Zellner Albion College

Lunar Impact Glasses

Glasses are formed when regolith is melted during a high-temperature event here, when, how often impacts occurred

Glasses are small, "clean", numerous, and optically homogeneous

Motivation: gain information about regolith lithologies AND the lunar impact flux

Motivation: Lunar Lithologies

lunar impact glasses = melted regoliths

e.g., Chao et al. (1970); Glass (1971); Delano and Livi (1981); Delano (1986); Wentworth and McKay (1991); Zellner et al. (2002); Korotev et al. (2010); Huang et al. (2017)

Compositions:

Regolith Transport
Subsurface material
Ancient regoliths

"Grab & Go" samples

Ratios of refractory elements: regoliths & glasses (Zellner, in review)

Impact Glasses: Lunar Lithologies

Powerful tools to extract info about lunar materials

Motivation: Impact Flux

ages of lunar impact glasses = timing of impact flux

e.g., Culler et al. (2000); Levine et al. (2005); Delano et al. (2007); Zellner et al. (2009a,b); Hui (2012); Norman et al. (2012); Nemchin et al. (2013); Zellner and Delano (2015); Zellner (2017); Huang et al. (2018); Zellner (in review); Norman et al. (in review)

40Ar/39Ar U-Th-Pb U-Pb

Composition
Spheres vs. Shards
Size

Delano et al. (2007): 1 large distant impact produces 4 glass shards w/ same age

Motivation: Impact Flux

Not All Impact Glasses Are The Same

Ar diffusivity:

Need to consider size, shape, X(NBO), K₂O (wt%) and quality of age data

(Zellner and Delano, 2015; Nguyen and Zellner, 2019)

⁴⁰Ar/³⁹Ar age "quality" affects usefulness of interpretation

Consider Composition + Size

~120 glasses: cutoff size ≥200 µm and X(NBO) value ≥0.23

Nguyen and Zellner (2019)

Bivariate density plots of size and X(NBO): Darker shading shows higher spatial density of glasses and indicates which values are more likely to yield "good" ages

Consider Shape: Spherules vs. Shards

Reports of young

40Ar/39Ar ages,
Pb/Pb model ages,
& U-Th-Pb
chemical ages on
glass spherules

(e.g., Culler et al. 2000, Levine et al. 2005, Adena et al. 2009, Hui, 2012 Norman et al. 2012, Nemchin et al. 2013 Norman et al., in review)

Spheres at ages ≤1000 Ma are common Spheres at ages ≥1500 Ma are rare

Spherules: A Sampling Bias

CTEM Model: A preponderance of young sample ages is seen when

- the simulated impact depth is as shallow as 10 cm
- ejecta is beyond 10 radii from a crater

Huang *et al.*, 2018

Conclusion:

Age record of lunar impact glass spherules may be due to a limited sampling depth and/or Ar diffusion

Motivation: Impact Flux

Future Work

Zellner (in review)

Paleomagnetism

Determine what is significant 3730 Ma? ~600 Ma?

Find source craters
Trace elements
High-res orbital
data

Solar Wind

Apollo 16 Drive Tube, 68001/2

Sample 1107, ~40 cm depth

Comps: Likely to yield very good Ar isotope data

Apollo 16 Glasses

Range of ages seen in 64501, 66041 surface impact glasses

Conclusions: Transformative Science

Impact glasses are useful tools for understanding

- the Moon's current, ancient, and subsurface <u>lithologies</u> and
- the Moon's <u>impact history</u>, especially when interpreted in the context of lunar (and other) impact samples

Impact glasses = "Grab & Go" samples

- → abundant in any lunar regolith
- → should be abundant in regoliths of other planetary bodies

Acknowledgements

NASA LASER and SSW Programs NSF Astronomy and Astrophysics Program

Conclusions

The accuracy and reliability of ⁴⁰Ar/³⁹Ar ages are related to size, shape, composition, and CRE age.

- → Glasses with highlands compositions are unlikely to yield old ages.
- → Spheres have lifetimes ≤1000 Ma before being broken into shards.

Impact glasses with ages >3500 Ma, from the tail end of the late heavy bombardment, are preserved.

Shards may be the preferred sample shape.

The Impact Flux

Ways to determine the time-varying impact flux: Samples:

- crystalline melts in Apollo samples
- crystalline melt clasts in meteorites
- zircons
- lunar impact glasses

Other:

~200 um

10s μm

crater counting and stratigraphy

Impact Glasses: Lunar Lithologies

Delano *et al.* (2007): 1 large distant impact produces 4 glass shards w/ same age

Zellner *et al.* (2009): Variety of impact glass compositions

Powerful tools to extract info about lunar materials

Not All Impact Glasses Are The Same

Ar diffusivity:

Need to
consider
size, shape,
X(NBO),
K₂O (wt%)
and quality
of age data
(Nguyen and Zellner, 2019)

⁴⁰Ar/³⁹Ar age "quality" affects usefulness of interpretation

Case Study: ~800 Myo Impact Glasses

800 Myo Glasses: Copernicus?

Probably not (& ~800 Ma ages in other samples + craters)

Case 1: Impact Glasses ≥3500 Myo

Sample Number	Age ± 2σ (Ma)	Shape	X(NBO)	Quality of Age Plot
293	3740 ± 50	shard	0.27	good
369	3630 ± 40	shard	0.38	good
390	3580 ± 45	shard	0.25	good
375	3475 ± 452	shard	0.26	fair
393	3316 ± 1198	sphere	0.29	fair
382	2960 ± 1600	shard	0.24	fair

Modified from Zellner et al., MAPS, 2009

^{*} large error!

So What About the Recent Flux?

Huang et al., Abstract #2677

Reports of young ⁴⁰Ar/³⁹Ar ages on glass spherules and young Pb/Pb model & U–Th–Pb chemical ages (Adena et al. 2009, Norman et al. 2012)

Timeline: Impact Flux + Life

